
ANOVA 

Comparing the means of more 

than two groups 

Analysis of variance (ANOVA) 

•! Like a t-test, but can compare more 

than two groups 

•! Asks whether any of two or more means 

is different from any other. 

•! In other words, is the variance among 

groups greater than 0? 

Null hypothesis for simple 

ANOVA 

•!H0 : Variance among groups = 0 

OR 

•!H0 : µ1 = µ2 = µ3 = µ4 = ... µk  
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Not all µ's equal

H0: all populations 

have equal means 

HA: at least one 

population mean is 

different. 



ANOVA's v. t-tests 

An ANOVA with 2 groups is 

mathematically equivalent to 

a two-tailed 2-sample t-test. 
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If we draw multiple 

samples from the same 

population, we are also 

drawing sample means 

from an expected 

distribution. 
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Under the null hypothesis, the sample mean of 

each group should vary because of sampling 

error. 

The standard deviation of sample means, when 

the true mean is constant, is the standard error: 
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(Note that we used standard errors in t-tests, e.g.: 
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Squaring the standard error, the variance 

among groups due to sampling error should be: 

In ANOVA, we work with variances rather than 

standard deviations. 
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If the null hypothesis is not true, the 

variance among groups should be 

equal to the variance due to 

sampling error plus the real variance 

among population means. 

With ANOVA, we test whether the 

variance among true group means is 

greater than zero. 

We do this by asking whether the 

observed variance among groups is 

greater than expected by chance 

(assuming the null is true): 
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2 is estimated by the 

“Mean Squares Group” 
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2 is the variance within groups, 

estimated by the  

“Mean Squares Error” 
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Population parameters Estimates from sample 



 

n !
x 

2 + Variance µ
i[ ]( )

 

MSgroup

Mean squares group 

Abbreviation: 

Estimates this parameter: 

Formula: 
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Mean squares error 

Abbreviation: 

Estimates this parameter: 

Formula: 
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Mean squares error 
Error sum of squares =  
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Error degrees of freedom =  
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MSerror is like the pooled variance in a 2-sample t-test: 
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Test statistic: F 

If H0 is true, then 

 

n !
x 

2
= !

x

2

In other words: 
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But, the above refer to population parameters. We 

must estimate F from samples with: MSgroup / MSerror 

F if null hypothesis is false: 

We test whether the F ratio is greater than one, as it 

would be if H0  is false: 
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But we must take into account sampling error. Often, F 

calculated from data will be greater than one even when the 

null is true. Hence we must compare F to a null distribution. 

ANOVA table 

Source SS df MS F  P 

Group 

Error 

Total 

An ANOVA table is a convenient way to keep track of 

the important calculations. 

Scientific papers often report ANOVA results with 

ANOVA tables. 

Example: Body temperature of 

squirrels in low, medium and 

hot environments 

Wooden & Walsberg (2004) Body temperature and locomotor capacity in a heterothermic rodent. Journal of 

Experimental Biology 207:41-46.!



Squirrel body temperature data (°C) 

Cold: 30.4, 31.0, 31.2, 31.0, 31.5, 30.4, 30.6, 31.1, 

  31.3, 31.9, 31.4, 31.6, 31.5, 31.4, 30.3, 30.5, 

  30.3, 30.0, 30.8, 31.0  

Warm: 36.3, 37.5, 36.9, 37.2, 37.5, 37.7, 37.5, 37.7, 

  38.0, 38.0, 37.6, 37.4, 37.9, 37.2, 36.3, 36.2, 

  36.4, 36.7, 36.8, 37.0, 37.7  

Hot:   40.7, 40.6, 40.9, 41.1, 41.5, 40.8, 40.5, 41.0, 

  41.3, 41.5, 41.3, 41.2, 40.7, 40.3, 40.2, 41.3, 

  40.7, 41.6, 41.5, 40.5 

Hypotheses 

H0: Mean body temperature is 

the same for all three groups of 

squirrels. 

HA: At least one of the three is 

different from the others. 

Summary data 

Group s n 

Cold  31.0 0.551 20 

Warm 37.2 0.582 21 

Hot 41.0 0.430 20 
 

x 

Total sample size:  

 

N = n! = 20 + 21= 20 = 61

Error Mean square for squirrels 

 

SSerror = dfisi
2!

= 19 0.551( )
2

+ 20 0.582( )
2

+19 0.430( )
2

= 16.1

dferror = 19 + 20 +19 = 58

MSerror =
16.1

58
= 0.277



Squirrel Mean Squares Group: 

 

X =
20 31.0( ) + 21 37.2( ) + 20 41.0( )

20 + 21+ 20
= 36.4

SSgroup = 20(31.0-36.4)2 +21(37.2-36.4)2 +20(41.0-36.4)2!

                  =1015.7!
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Squirrel Mean Squares Group: 

dfgroup= k – 1 = 3-1=2 
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dfgroups
=
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2
= 507.9

The test statistic for ANOVA is 

F 

 

F =
MSgroup

MSerror
=
507.9

0.277
= 1834.7

MSgroupis always in the numerator,  

MSerror is always in the denominator 

Compare to F
!(1),df_group,df_error 

F0.05(1),2,58 = 3.15. 

Since 1835 > 3.15, we know P < 0.05 and we can 

reject the null hypothesis.  

The variance in sample group means is bigger than 

expected given the variance within sample groups. 

Therefore, at least one of the groups has a population 

mean different from another group. 



ANOVA table – squirrel data 

Source SS df MS F  P 

Group 1015.7 2 507.9 1834.7 <0.0001 

Error 16.1 58 0.277 

Total 1031.8 60 

Assumptions of ANOVA 

(1)!Random samples 

(2)! Normal distributions for each  

 population 

(3) Equal variances for all populations.  

 (Homoscedasticity)  

Kruskal-Wallis test 

•! A non-parametric test similar to a single 

factor ANOVA 

•! Uses the ranks of the data points  

Multiple-factor ANOVA 

•! A factor is a categorical variable  

•! ANOVAs can be generalized to look at more 
than one categorical variable at a time 

•! Not only can we ask whether each categorical 
variable affects a numerical variable, but also 
do they interact in affecting the numerical 
variable. 



Fixed vs. random effects 

1.! Fixed effects:  With fixed effects, the treatments are 

chosen by the experimenter. They are not a 

random subset of all possible treatments. 
(e.g., specific drug treatments, specific diets, 

season...) 

2.  Random effects:  With random effects, the 

treatments are a random sample from all possible 
treatments. 

(e.g., family, location, ...) 

For single-factor ANOVAs, there is no difference in the 
statistics for fixed or random effects. 

2-factor ANOVA: Example 

Heliconius erato 

This experiment uses two "morphs”: 

 the rayed morph from the "north,  

 and the postman morph from the "south." 

"rayed" "postman" 

Testing multiple hypotheses 

H0: Mean lifespans are the same in 

both geographical zones.!

H0: Mean lifespans are the same for 

both morphs.!

H0: There is no interaction between 

geographical zone and morph.!

Heliconius ANOVA table 

Source of 

variation 

SS df MS F P 

Zone 9.1 1 9.1 0.96 0.327 

Morph 34.6 1 34.6 3.68 0.056 

Zone*Morph 80.5 1 80.5 8.59 0.004 

Error 1837.9 196 9.38 



Multiple comparisons 

Probability of a Type I error in N tests =  

1-(1-!)N 

For 20 tests, the 

probability of at least 

one Type I error is 

~65%. 

"Bonferroni correction" for 

multiple comparisons 

Uses a smaller ! value: 

 

! " =
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number of tests

Which groups are different? 

After finding evidence for differences among  

means with ANOVA, sometimes we want to know:   

Which groups are different from which others? 

One method for this: the Tukey-Kramer test 

The Tukey-Kramer test 

Done after finding variation among groups 

with single-factor ANOVA. 

Compares all group means to all other 

group means 



The wood-wide web 

Trees (and other plants) 

are often connected by 

roots via mycorrhizae, 
which allow the 

exchange of resources. 

Test for carbon transfer between 

birch and Douglas fir;  

Comparing effects of shading on fir 

Net amount of carbon transferred from birch to fir 

Shade 

treatment 

Sample mean Sample 

standard 
deviation 

Sample size 

Deep shade 18.33 6.98 5 

Partial shade 8.29 4.76 5 

No shade 5.21 3.00 5 

Simard et al. (1997) Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388:579-582.!

ANOVA results 

Source of 

variation 

SS df MS F P 

Groups 

(treatments) 

470.704 2 235.352 8.784 0.004 

Error 321.512 12 26.792 

Total 792.216 14 

Order the group means 



Null hypotheses for Tukey-Kramer 
Why not use a series of two-

sample t-tests? 

Multiple comparisons would cause the t-tests  

to reject too many true null hypotheses.   

Tukey-Kramer adjusts for the number of tests. 

Tukey-Kramer also uses information about  

the variance within groups from all the data,  

so it has more power than a t-test with a  
Bonferroni correction. 

Results 

Groups which cannot be distinguished share  

the same letter. 



Another imaginary example: 
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Cannot reject 

Cannot reject 

Reject 
With the Tukey-Kramer method, the probability of 

making at least one Type 1 error throughout the 

course of testing all pairs of means is no greater 
than the significance level !. 


